alexa Aldehyde oxidase carrying an unusual subunit structure from Pseudomonas sp. MX-058.
Microbiology

Microbiology

Fermentation Technology

Author(s): Michihiko Kataoka, Rungruedee Thiwthong

Abstract Share this page

Pseudomonas sp. MX-058 produces aldehyde oxidase catalysing glyoxal to glyoxylic acid. Two aldehyde oxidases (F10 and F13) were purified to homogeneity from Pseudomonas sp. MX-058. F10 and F13 had subunit structures, a heterotetramer and heteropentamer respectively. The N-terminal amino acid sequences of all subunits were highly homologous to amino acid sequences of the putative oxidoreductases of Pseudomonas strains. All of these homologous oxidoreductases have a heterotrimer structure consisting of 85-88 (α), 37-39 (β) and 18-23 (γ) kDa subunits. However, the α-subunits of F10 and F13 might have decomposed into two [80 (α(1)) and 9 kDa (α(2))] and three [58 (α(1')), 22 (α(1″)) and 9 (α(2)) kDa] subunits, respectively, while the β- and γ-subunits remained intact. Both F10 and F13 show high activity toward several aliphatic and aromatic aldehydes. The aldehyde oxidases of Pseudomonas sp. MX-058 has unique protein structures, α(1)α(2)βγ for F10 and α(1')α(1″)α(2)βγ for F13, a heterotetramer and heteropentamer respectively. The enzymes exhibit significantly low activity toward glyoxylic acid compared with glyoxal, which is an advantageous property for glyoxylic acid production from glyoxal.

This article was published in Microbial Biotechnology and referenced in Fermentation Technology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords