alexa Alkylating DNA damage stimulates a regulated form of necrotic cell death.
Pharmaceutical Sciences

Pharmaceutical Sciences

Pharmaceutica Analytica Acta

Author(s): Zong WX, Ditsworth D, Bauer DE, Wang ZQ, Thompson CB

Abstract Share this page

Abstract Necrosis has been considered a passive form of cell death in which the cell dies as a result of a bioenergetic catastrophe imposed by external conditions. However, in response to alkylating DNA damage, cells undergo necrosis as a self-determined cell fate. This form of death does not require the central apoptotic mediators p53, Bax/Bak, or caspases and actively induces an inflammatory response. Necrosis in response to DNA damage requires activation of the DNA repair protein poly(ADP-ribose) polymerase (PARP), but PARP activation is not sufficient to determine cell fate. Cell death is determined by the effect of PARP-mediated beta-nicotinamide adenine dinucleotide (NAD) consumption on cellular metabolism. Cells using aerobic glycolysis to support their bioenergetics undergo rapid ATP depletion and death in response to PARP activation. In contrast, cells catabolizing nonglucose substrates to maintain oxidative phosphorylation are resistant to ATP depletion and death in response to PARP activation. Because most cancer cells maintain their ATP production through aerobic glycolysis, these data may explain the molecular basis by which DNA-damaging agents can selectively induce tumor cell death independent of p53 or Bcl-2 family proteins.
This article was published in Genes Dev and referenced in Pharmaceutica Analytica Acta

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version