alexa Allele-specific hypermethylation of the retinoblastoma tumor-suppressor gene.
Genetics & Molecular Biology

Genetics & Molecular Biology

Cloning & Transgenesis

Author(s): Sakai T, Toguchida J, Ohtani N, Yandell DW, Rapaport JM, , Sakai T, Toguchida J, Ohtani N, Yandell DW, Rapaport JM,

Abstract Share this page

Abstract Inactivation of the retinoblastoma gene appears to have a fundamental role in the genesis of retinoblastoma, osteosarcoma, and other malignant tumors. The gene is generally inactivated because of loss-of-function mutations, although epigenetic phenomena, such as hypermethylation of the promoter region, could possibly have the same effect. We investigated the methylation pattern at the 5' end of the retinoblastoma gene, including its promoter region and exon 1, in DNA purified from 56 primary retinoblastomas. We found five tumors with evidence for hypermethylation, all from unilateral, simplex patients. No methylation abnormalities were detected in DNA purified from the leukocytes from these patients. It is interesting that in one of these tumors the hypermethylation was confined to one allele. There were no mutations in a 1,306-bp sequence including the hypermethylated region that might account for the allele-specific hypermethylation. We believe that the hypermethylation of the retinoblastoma gene that we found in these tumors corresponds to the allelic inactivation of the gene, and we speculate that erroneous hypermethylation without alteration of nucleotide sequence occasionally plays a role in the genesis of this cancer. If this is true, then retinoblastomas with hypermethylation might be treatable with chemotherapeutic agents that interfere with methylation of DNA.
This article was published in Am J Hum Genet and referenced in Cloning & Transgenesis

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version