alexa Altered expression of connexin subtypes in mesial temporal lobe epilepsy in humans.
Pharmaceutical Sciences

Pharmaceutical Sciences

Biochemistry & Pharmacology: Open Access

Author(s): Collignon F, Wetjen NM, CohenGadol AA, Cascino GD, Parisi J,

Abstract Share this page

Abstract OBJECT: The causes of epileptic events remain unclear. Much in vitro and in vivo experimental evidence suggests that gap junctions formed by connexins (Cxs) between neurons and/or astrocytes contribute to the generation and maintenance of seizures; however, few experiments have been conducted in humans, and those completed have shown controversial data. The authors designed a study to compare the level of expression of Cxs in hippocampi from epileptic and nonepileptic patients to assess whether an alteration of gap junction expression in epileptic tissue plays a role in seizure origin and propagation. METHODS: The expression of Cxs32, -36, and -43 was studied in 47 consecutive samples of hippocampi obtained from epileptic patients who had undergone an amygdalohippocampectomy for the treatment of intractable seizure. These expression levels were compared with those in hippocampi obtained in nonepileptic patients during postmortem dissection. Immunostaining was performed to create one slide for each of the three Cxs. Each slide demonstrated multiple cells from each of six regions (CA1, CA2, CA3, CA4, dentate gyrus, and subiculum). Two independent reviewers rated each Cx-region combination according to an immunoreactive score. Across all three measures-that is, staining intensity, percentage of positively stained cells, and immunoreactive score-Cx32 appeared to be expressed at a significantly lower level in the epileptic patients compared with controls (p < 0.001 for each measure), whereas Cx43 appeared to be expressed more among the epileptic patients (p < 0.001 for each measure). There was no evidence of any differential expression of Cx36. There was, however, regional variation within each Cx subtype. For Cx36, the staining intensity was higher in the CA2 region in the epilepsy group. CONCLUSIONS: The increase in Cx43, decrease in Cx32, and preservation of Cx36 expression in hippocampi from epileptic persons could play a role in the development of seizures in patients with temporal sclerosis. Additional studies must be completed to understand this mechanism better. This article was published in J Neurosurg and referenced in Biochemistry & Pharmacology: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords