alexa Aluminum determination in biological fluids and dialysis concentrates via chelation with 8-hydroxyquinoline and solvent extraction fluorimetry.


Journal of Clinical Toxicology

Author(s): Buratti M, Valla C, Pellegrino O, Rubino FM, Colombi A

Abstract Share this page

Abstract We describe a simple, rapid, and sensitive fluorescence method for measurement of aluminum (Al) in human biological fluids, in dialysis solutions, and in tap water, which uses 8-hydroxyquinoline for ion chelation. The fluorescence intensity of the toluene-extracted metal chelate (excitation wavelength, 380 nm; emission wavelength, 504 nm) remains unchanged for over 48 h at room temperature. Fluorescence intensity is a linear function of the concentration of Al in the 2-1000 microg/L range with detection limits of 0.7-2 microg/L. A large excess of other ions normally found in biological fluids does not interfere in Al determination. The method developed was successfully used in assaying Al in serum and urine of reference subjects, in serum samples from patients undergoing long-term dialysis, and in dialysis solutions. Al concentrations, measured by this fluorimetric procedure, were compared with those obtained by Zeeman graphite-furnace atomic absorption spectrometry. A correlation coefficient of 0.98 was obtained. The proposed method could be used for routine analysis in clinical laboratories for accurate determination of aluminum in aqueous or biological fluids. This article was published in Anal Biochem and referenced in Journal of Clinical Toxicology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version