alexa Amino acid domains control the circulatory residence time of primate acetylcholinesterases in rhesus macaques (Macaca mulatta).
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Glycomics & Lipidomics

Author(s): Cohen O, Kronman C, Velan B, Shafferman A

Abstract Share this page

Abstract An array of 13 biochemically well defined molecular forms of bovine, human and newly cloned rhesus macaque (Macaca mulatta) AChEs (acetylcholinesterases) differing in glycosylation and subunit assembly status were subjected to comparative pharmacokinetic studies in mice and rhesus macaques. The circulatory lifetimes of recombinant bovine, macaque and human AChEs in mice were governed by previously determined hierarchical rules; the longest circulatory residence time was obtained when AChE was fully sialylated and tetramerized [Kronman, Chitlaru, Elhanany, Velan and Shafferman (2000) J. Biol. Chem. 275, 29488-29502; Chitlaru, Kronman, Velan and Shafferman (2001) Biochem. J. 354, 613-625]. In rhesus macaques, bovine molecular forms still obeyed the same hierarchical rules, whereas primate AChEs showed significant deviation from this behaviour. Residence times of human and rhesus AChEs were effectively extended by extensive sialylation, but subunit tetramerization and N-glycan addition had a marginal effect on their circulatory longevity in macaques. It appears that the major factor responsible for the differential pharmacokinetics of bovine and primate AChEs in macaques is related to differences in primary structure, suggesting the existence of a specific mechanism for the circulatory clearance of primate AChEs in rhesus macaques. The 35 amino acids that differ between bovine and primate AChEs are clustered within three defined domains, all located at the enzyme surface, and may therefore mediate the facilitated removal of primate cholinesterases specifically from the circulation of monkeys. These surface domains can be effectively masked by poly(ethylene glycol) appendage, resulting in the generation of chemically modified human and macaque AChEs that reside in the circulation for extraordinarily long periods of time (mean residence time of 10000 min). This extended residence time is similar to that displayed by native macaque butyrylcholinesterase (9950 min), which is the prevalent cholinesterase form in the circulation of adult macaques.
This article was published in Biochem J and referenced in Journal of Glycomics & Lipidomics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 3rd International Conference on Transcriptomics
    October 30 - November 01, 2017 Bangkok, Thailand

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords