alexa Amino-imino adenine tautomerism induced by the cooperative effect between metal ion and H2O NH3.
Pharmaceutical Sciences

Pharmaceutical Sciences

Biochemistry & Pharmacology: Open Access

Author(s): Ai H, Chen J, Zhang C

Abstract Share this page

Abstract Tautomerization processes of amino-imino adenine isomer (A → A1) in five different environments are studied by the density functional theory (B3LYP) method. The five environments are metal ion (M, M = K(+), Na(+), Cu(+), Zn(+), Ca(2+), Mg(2+), Cu(2+), Zn(2+)) coordinated bidentate system, either monowater (W) or monoammonia (N) attached system, both metal ion and monowater cooperative system (M-W), and both metal ion and monoammonia cooperative system (M-N). Results show that the complexes formed by noncanonical rare imino form A1 are more stable than those formed by the canonical amino one in most of these environments. The tautomerization of A → A1 becomes quite easy in either M-W or M-N system. It is noteworthy that under divalent M-N environment the A → A1 process meets with particularly lower and even free energy barrier, indicating the instability of the amino adenine isomer and probable existence of more stable imino adenine isomer. Expanding studies for the microhydration at the metal ion of the M-N system predict the required number (n) of water molecules to remain the amino adenine isomer A (AMNnW) stable. The number of n is 2, 3, 3, and 4 for M = Ca(2+), Zn(2+), Cu(2+), and Mg(2+), respectively. The present study provides further understanding for the amino-imino tautomerization behavior of the most stable adenine under the influence of several related closely factors, and is useful for rational design of these different environments for the purposes of prevention and control of pyrimidines mispairing, which is responsible for the mutagenic properties of the nucleic acid bases. This article was published in J Phys Chem B and referenced in Biochemistry & Pharmacology: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords