alexa Ammonia production by intestinal bacteria: the effects of lactose, lactulose and glucose.
Food & Nutrition

Food & Nutrition

Journal of Probiotics & Health

Author(s): Vince AJ, Burridge SM

Abstract Share this page

Abstract Ammonia production by eight groups of intestinal bacteria was measured, and the effect on ammonia production of lowered pH and ambient ammonia concentration was determined. Endogenous ammonia production from bacterial protoplasm was also examined. To examine the mechanisms by which fermentable substrates reduce ammonia formation in a faecal incubation system, the effect of lactose, lactulose or glucose on ammonia release by pure cultures of intestinal bacteria was studied. The largest amounts of ammonia were generated by gram-negative anaerobes, clostridia, enterobacteria, and Bacillus spp. Gram-positive non-sporing anaerobes, streptococci and micrococci formed modest amounts, and lactobacilli and yeasts formed very little ammonia. All groups of bacteria formed less ammonia at pH 5.0 than at pH 7.0 and production of ammonia was not inhibited when 30 mmol ammonia/litre was included in the medium. Small amounts of ammonia were formed due to endogenous metabolism of bacterial cells. Washed cell suspensions of four isolates of Bacteroides, one clostridial isolate and two streptococcal isolates formed less ammonia from alanine, methionine or histidine after growth in the presence of either lactose or lactulose. In contrast, the Bacteroides isolates formed more ammonia from aspartate than from either lactose or lactulose. Also, cultures of gram-negative anaerobes and enterobacteria, and to a lesser extent clostridia and streptococci, formed significantly less ammonia in nutrient broth when lactose, lactulose or glucose was included in the medium. This decrease in ammonia formation was not due to a fall in pH of the medium. Ammonia production by gram-positive non-sporing anaerobes was not affected by carbohydrate fermentation. These results suggest that gram-negative anaerobic bacteria make a major contribution to ammonia generated from peptides and amino acids in vivo, and that ammonia may be formed from bacterial cells in the colon. Fermentation of lactose and lactulose may repress the formation and inhibit the activity of enzymes responsible for ammonia release. In the human colon these substrate effects may decrease the amount of ammonia available to exert a toxic effect on the host, and thus contribute to the beneficial effects of lactulose when it is used in the treatment of portosystemic encephalopathy. This article was published in J Med Microbiol and referenced in Journal of Probiotics & Health

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords