alexa Amnion-derived multipotent progenitor cells improve achilles tendon repair in rats.
Anesthesiology

Anesthesiology

Journal of Pain & Relief

Author(s): Philip J, Hackl F, Canseco JA, Kamel RA, Kiwanuka E,

Abstract Share this page

Abstract OBJECTIVE: Tendon injuries produce considerable morbidity, long-lasting disability, and remain a considerable challenge for clinicians and patients. The objective of the study was to assess the effect of amnion-derived multipotent progenitor (AMP) cells and amnion-derived cell cytokine solution on Achilles tendon healing by using a rat model. METHODS: Achilles tendons of Sprague-Dawley rats were exposed and transected. The distal and proximal ends were injected with either saline, amnion-derived cell cytokine solution, or AMP cells in a standardized fashion and then sutured by using a Kessler technique. Tendons from each group (n = 6-13) were collected at weeks 1, 2, and 4 postoperatively and assessed for material properties (ultimate tensile strength, Young modulus, yield strength, and breaking strength). Tendons were also evaluated histologically for cross-sectional area by using hematoxylin-eosin and trichrome stains. RESULTS: Mechanical testing showed that the Young modulus was significantly higher in AMP cells-treated tendons at week 4 compared with both saline-treated and amnion-derived cell cytokine solution-treated tendons. Yield strength was significantly higher in the AMP cells-treated group compared with saline-treated controls at week 4. No significant differences were observed between the study groups at weeks 1 and 2. DISCUSSION: Amnion-derived multipotent progenitor cells have a positive effect on healing tendons by improving mechanical strength and elastic modulus during the healing process. The presented findings suggest the clinical utility of AMP cells in facilitating the healing of ruptured tendons. Both the Young modulus and yield strengths of tendons increased significantly following treatment with AMP cells.
This article was published in Eplasty and referenced in Journal of Pain & Relief

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords