alexa AMPK and FoxO1 regulate catalase expression in hypoxic pulmonary arterial smooth muscle.
Pharmaceutical Sciences

Pharmaceutical Sciences

Pharmaceutica Analytica Acta

Author(s): Awad H, Nolette N, Hinton M, Dakshinamurti S

Abstract Share this page

BACKGROUND: Hypoxia and reactive oxygen species (ROS) including H(2)O(2) play major roles in triggering and progression of pulmonary vascular remodeling in persistent pulmonary hypertension. Catalase (CAT), the major endogenous enzyme scavenging H(2)O(2), is regulated in a tissue- and context-specific manner. OBJECTIVE: To investigate mechanisms by which hypoxia and H(2)O(2) regulate catalase expression, and the role of AMPK-FoxO pathway, in neonatal porcine pulmonary artery smooth muscle (PASMC). DESIGN/METHODS: PASMC were grown in hypoxia (10% O(2)) or normoxia (21% O(2)) for 72 hr. We measured catalase activity and lipid peroxidation; CAT, FoxO1, and FoxO3a expression by qPCR; protein contents of CAT, FoxOs, p-AMPK, p-AKT, p-JNK, p-ERK1/2 in whole lysates, and FoxOs in nuclear extracts, by immunoblot; and FoxO-1 nuclear localization by immunocytochemistry, quantified by laser scanning cytometry. RESULTS: Hypoxia upregulated CAT transcription, content and activity, by increasing CAT transcription factors FoxO1 and FoxO3a mRNA, and promoting nuclear translocation of FoxO1. However, lipid peroxidation increased in hypoxic PASMC. Among candidate FoxO regulatory kinases, hypoxia activated AMPK, and decreased p-Akt and ERK1/2. AMPK activation increased FoxO1 (total and nuclear) and CAT, while AMPK inhibition inhibited FoxO1 and CAT, but not FoxO3a. Exogenous H(2)O(2) decreased p-AMPK and increased p-AKT in hypoxic PASMC. This decreased active FoxO1, and reduced mRNA and protein content of CAT. Hypoxic induction of CAT, AKT inhibition (LY294002), or addition of PEG-catalase partly ameliorated the H(2)O(2) -mediated loss of nuclear FoxO1. CONCLUSIONS: Hypoxia induces catalase expression, though this adaptation is insufficient to protect PASMC from hypoxia-induced lipid peroxidation. This occurs via hypoxic activation of AMPK, which promotes nuclear FoxO1 and thus catalase expression. Exogenous ROS may downregulate cellular antioxidant defenses; H(2)O(2) activates survival factor Akt, decreasing nuclear FoxO1 and thus catalase.

  • To read the full article Visit
  • Open Access
This article was published in Pediatr Pulmonol and referenced in Pharmaceutica Analytica Acta

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version