alexa An all‐electron numerical method for solving the local density functional for polyatomic molecules
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Proteomics & Bioinformatics

Author(s): B Delley

Abstract Share this page

A method for accurate and efficient local density functional calculations (LDF) on molecules is described and presented with results. The method, Dmol for short, uses fast convergent three‐dimensional numerical integrations to calculate the matrix elements occurring in the Ritz variation method. The flexibility of the integration technique opens the way to use the most efficient variational basis sets. A practical choice of numerical basis sets is shown with a built‐in capability to reach the LDF dissociation limit exactly. Dmol includes also an efficient, exact approach for calculating the electrostatic potential. Results on small molecules illustrate present accuracy and error properties of the method. Computational effort for this method grows to leading order with the cube of the molecule size. Except for the solution of an algebraic eigenvalue problem the method can be refined to quadratic growth for large molecules.

This article was published in J Chem Phys and referenced in Journal of Proteomics & Bioinformatics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 9th International Conference on Bioinformatics
    October 23-24, 2017 Paris, France
  • 9th International Conference and Expo on Proteomics
    October 23-25, 2017 Paris, France

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version