alexa An analysis of ensemble pruning techniques based on ordered aggregation.
Geology & Earth Science

Geology & Earth Science

Journal of Geology & Geophysics

Author(s): MartnezMuoz G, HernndezLobato D, Surez A

Abstract Share this page

Abstract Several pruning strategies that can be used to reduce the size and increase the accuracy of bagging ensembles are analyzed. These heuristics select subsets of complementary classifiers that, when combined, can perform better than the whole ensemble. The pruning methods investigated are based on modifying the order of aggregation of classifiers in the ensemble. In the original bagging algorithm, the order of aggregation is left unspecified. When this order is random, the generalization error typically decreases as the number of classifiers in the ensemble increases. If an appropriate ordering for the aggregation process is devised, the generalization error reaches a minimum at intermediate numbers of classifiers. This minimum lies below the asymptotic error of bagging. Pruned ensembles are obtained by retaining a fraction of the classifiers in the ordered ensemble. The performance of these pruned ensembles is evaluated in several benchmark classification tasks under different training conditions. The results of this empirical investigation show that ordered aggregation can be used for the efficient generation of pruned ensembles that are competitive, in terms of performance and robustness of classification, with computationally more costly methods that directly select optimal or near-optimal subensembles. This article was published in IEEE Trans Pattern Anal Mach Intell and referenced in Journal of Geology & Geophysics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords