alexa An analysis of high glucose and glucosamine-induced gene expression and oxidative stress in renal mesangial cells.
Ophthalmology

Ophthalmology

Journal of Clinical & Experimental Ophthalmology

Author(s): Cheng DW, Jiang Y, Shalev A, Kowluru R, Crook ED,

Abstract Share this page

Abstract Renal mesangial cells play an important role in the development of diabetic kidney disease. We have previously demonstrated that some of the effects of high glucose on mesangial extracellular matrix (ECM) protein expression are mediated by the hexosamine biosynthesis pathway (HBP) in which fructose-6-phosphate is converted to glucosamine-6-phosphate by the rate-limiting enzyme glutamine:fructose-6-phosphate amidotransferase (GFAT). Using Affymetrix murine expression U430 2.0 oligochips, we examined the global effects of high glucose (HG) and glucosamine (GlcN) on mRNA expression of a mouse mesangial cell line (MES-13). We sought to determine the portion of mRNA expression in MES-13 cells, which is mediated both by high glucose and glucosamine, i.e., via the HBP. Of the 34,000 genes on the chip, approximately 55.7 - 60.8\% genes are detected in MES-13 cells. Culturing MES-13 cells for 48 h with HG alters the expression of approximately 389 genes at our preset threshold levels (at least 2-fold change) where 263 genes are up-regulated and 126 genes are down-regulated. GlcN also increases the expression of 106 genes and decreases 94 genes during the same period of incubation. Seventy-two genes in the chip are commonly regulated by HG and GlcN, in which 33 genes are up and 39 genes are down. The mRNA level of thioredoxin interacting protein (TXNIP), an inhibitor of thioredoxin activity, is maximally increased approximately 18.8 and 9.9-fold respectively by HG and GlcN. The differential expression of several genes found in the microarray analysis is further validated by real-time quantitative PCR. Significant biological processes commonly targeted by HG and GlcN are the TXNIP-thioredoxin system, oxidative stress, endoplasmic reticulum (ER) stress, extracellular matrix genes, and interferon-inducible genes. Stable overexpression of TXNIP in MES-13 cells increases glucose and glucosamine-mediated ECM gene expression and oxidative stress. We conclude from these results that the HBP mediates several effects of high glucose on mesangial cell metabolism, which promotes reactive oxygen species generation to cause cellular oxidative stress, ECM gene expression and apoptosis. This article was published in Arch Physiol Biochem and referenced in Journal of Clinical & Experimental Ophthalmology

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords