alexa An apoptosis targeted stimulus with nanosecond pulsed electric fields (nsPEFs) in E4 squamous cell carcinoma.
Materials Science

Materials Science

Journal of Nanomedicine & Biotherapeutic Discovery

Author(s): Ren W, Beebe SJ

Abstract Share this page

Abstract Stimuli directed towards activation of apoptosis mechanisms are an attractive approach to eliminate evasion of apoptosis, a ubiquitous cancer hallmark. In these in vitro studies, kinetics and electric field thresholds for several apoptosis characteristics are defined in E4 squamous carcinoma cells (SCC) exposed to ten 300 ns pulses with increasing electric fields. Cell death was >95\% at the highest electric field and coincident with phosphatidylserine externalization, caspase and calpain activation in the presence and absence of cytochrome c release, decreases in Bid and mitochondria membrane potential (Δψm) without apparent changes reactive oxygen species levels or in Bcl2 and Bclxl levels. Bid cleavage was caspase-dependent (55-60\%) and calcium-dependent (40-45\%). Intracellular calcium as an intrinsic mechanism and extracellular calcium as an extrinsic mechanism were responsible for about 30 and 70\% of calcium dependence for Bid cleavage, respectively. The results reveal electric field-mediated cell death induction and progression, activating pro-apoptotic-like mechanisms and affecting plasma membrane and intracellular functions, primarily through extrinsic-like pathways with smaller contributions from intrinsic-like pathways. Nanosecond second pulsed electric fields trigger heterogeneous cell death mechanisms in E4 SCC populations to delete them, with caspase-associated cell death as a predominant, but not an unaccompanied event.
This article was published in Apoptosis and referenced in Journal of Nanomedicine & Biotherapeutic Discovery

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]csonline.com

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords