alexa An edge-guided image interpolation algorithm via directional filtering and data fusion.


Journal of Cancer Science & Therapy

Author(s): Zhang L, Wu X

Abstract Share this page

Abstract Preserving edge structures is a challenge to image interpolation algorithms that reconstruct a high-resolution image from a low-resolution counterpart. We propose a new edge-guided nonlinear interpolation technique through directional filtering and data fusion. For a pixel to be interpolated, two observation sets are defined in two orthogonal directions, and each set produces an estimate of the pixel value. These directional estimates, modeled as different noisy measurements of the missing pixel are fused by the linear minimum mean square-error estimation (LMMSE) technique into a more robust estimate, using the statistics of the two observation sets. We also present a simplified version of the LMMSE-based interpolation algorithm to reduce computational cost without sacrificing much the interpolation performance. Experiments show that the new interpolation techniques can preserve edge sharpness and reduce ringing artifacts.
This article was published in IEEE Trans Image Process and referenced in Journal of Cancer Science & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version