alexa An evaluation of machine-learning methods for predicting pneumonia mortality.
Engineering

Engineering

Industrial Engineering & Management

Author(s): Cooper GF, Aliferis CF, Ambrosino R, Aronis J, Buchanan BG,

Abstract Share this page

Abstract This paper describes the application of eight statistical and machine-learning methods to derive computer models for predicting mortality of hospital patients with pneumonia from their findings at initial presentation. The eight models were each constructed based on 9847 patient cases and they were each evaluated on 4352 additional cases. The primary evaluation metric was the error in predicted survival as a function of the fraction of patients predicted to survive. This metric is useful in assessing a model's potential to assist a clinician in deciding whether to treat a given patient in the hospital or at home. We examined the error rates of the models when predicting that a given fraction of patients will survive. We examined survival fractions between 0.1 and 0.6. Over this range, each model's predictive error rate was within 1\% of the error rate of every other model. When predicting that approximately 30\% of the patients will survive, all the models have an error rate of less than 1.5\%. The models are distinguished more by the number of variables and parameters that they contain than by their error rates; these differences suggest which models may be the most amenable to future implementation as paper-based guidelines.
This article was published in Artif Intell Med and referenced in Industrial Engineering & Management

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords