alexa An iminoboronate construction set for subcomponent self-assembly.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Glycomics & Lipidomics

Author(s): Hutin M, Bernardinelli G, Nitschke JR

Abstract Share this page

Abstract Recently we have demonstrated a series of systems in which complex structures were created from simple amine and aldehyde subcomponents by copper(I)-templated imine bond formation. We describe herein the extension of this "subcomponent self-assembly" concept to the generation of structures based upon the iminoboronate ester motif. Equimolar amounts of diol, amine, and 2-formylphenylboronic acid reacted by reversible B-O and C=N bond formation to generate iminoboronate esters, as has recently been reported by James et al. (Org. Lett. 2006, 8, 609-612). The extent of ester formation was shown to depend upon a number of factors. The exploration of these factors allowed rules and predictions to be formulated governing the self-assembly process. These rules allowed the construction of more complex structures containing multiple boron atoms, including a trigonal cage containing six boron centers, as well as pointing the way to the construction of yet more intricate architectures. The lability of the B-O and C=N bonds also allowed different diol and amine subcomponents to be substituted within these structures. Selection rules were also determined for these substitution reactions, allowing the products to be predicted based upon the electronic properties of the diols and diamines employed. These results thus demonstrate the generality of the subcomponent self-assembly methodology through its application to a new dynamic covalent system. This article was published in Chemistry and referenced in Journal of Glycomics & Lipidomics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version