alexa An immunohistochemical study of the nerve growth factor receptor in developing rats
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Stem Cell Research & Therapy

Author(s): Qiao Yan

Abstract Share this page

Nerve growth factor (NGF) receptor expression was studied in rats between embryonic day 11 (E11) to postnatal day 10 (PND10) by using a monoclonal antibody, 192-IgG, that specifically recognizes rat NGF receptor. Sympathetic ganglia were lightly stained by 192-IgG for NGF receptor immunoreactivity (NGFRI) (E11-PND10). Neural crest-derived sensory ganglia were moderately to densely stained (E11-PND10). Areas in CNS innervated by the central processes of these ganglia were also stained. Parasympathetic ciliary ganglion showed some detectable staining (E16-PND6). Placode-derived sensory ganglia were stained more densely than that of neural crest-derived sensory ganglia. The most densely stained tissue for NGFRI was found in all peripheral nerves. Basal forebrain cholinergic neurons were NGFRI positive from E15 throughout the period examined. Motoneurons in both spinal cord and brain stem were positive for NGFRI between E15 and PND10. NGFRI staining was seen in a variety of sensory pathways and related structures, such as olfactory tract and glomerular layer of olfactory bulb; retina, optic nerve and tract, lateral geniculate nucleus, medial terminal nucleus of the accessory optic tract, and olivary pretectal nucleus; ventral cochlear nucleus and to a lesser degree in dorsal cochlear nucleus, superior olive, and nucleus of lateral lemniscus; solitary tract; cuneate nucleus, gracile nucleus, and ventroposterior thalamic nucleus. The specific staining was also found in some other CNS structures, including brain-stem reticular formation; amygdala; medial nucleus of inferior olive but not the rest of inferior olive, external granule cell layer and Purkinje's cells of cerebellum, and deep cerebellar nuclei. Some non-neuronal tissues such as meninges and dental tissue showed very distinctive staining. Limb buds and somites were NGFRI positive starting at E11, and the staining on muscle tissue became very dense at E15-E18 and largely disappeared around PND10. Embryonic thymus was positive for NGFRI. The adventitia surrounding blood vessels was very densely stained. The changes in NGFRI staining seen in this study suggest that NGF may have broader effects during development than previously thought.

This article was published in Journal of Neuroscience and referenced in Journal of Stem Cell Research & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version