alexa An in vivo quantitative structure-activity relationship for a congeneric series of pyropheophorbide derivatives as photosensitizers for photodynamic therapy.
Molecular Biology

Molecular Biology

Journal of Cytology & Histology

Author(s): Henderson BW, Bellnier DA, Greco WR, Sharma A, Pandey RK,

Abstract Share this page

Abstract An in vivo quantitative structure-activity relationship (QSAR) study was carried out on a congeneric series of pyropheophorbide photosensitizers to identify structural features critical for their antitumor activity in photodynamic therapy (PDT). The structural elements evaluated in this study include the length and shape (alkyl, alkenyl, cyclic, and secondary analogs) of the ether side chain. C3H mice, harboring the radiation-induced fibrosarcoma tumor model, were used to study three biological response endpoints: tumor growth delay, tumor cell lethality, and vascular perfusion. All three endpoints revealed highly similar QSAR patterns that constituted a function of the alkyl ether chain length and drug lipophilicity, which is defined as the log of the octanol:water partition coefficient (log P). When the illumination of tumor, tumor cells, or cutaneous vasculature occurred 24 h after sensitizer administration, activities were minimal with analogs of log P < or = 5, increased dramatically between log P of 5-6, and peaked between log P of 5.6-6.6. Activities declined gradually with higher log P. The lack of activity of the least-lipophilic analogs was explained in large part by their poor biodistribution characteristics, which yielded negligible tumor and plasma drug levels at the time of treatment with light. The progressively lower potencies of the most lipophilic analogs cannot be explained through the overall tumor and plasma pharmacokinetics of photosensitizer because tumor and plasma concentrations progressively increased with lipophilicity. When compensated for differences in tumor photosensitizer concentration, the 1-hexyl derivative (optimal lipophilicity) was 5-fold more potent than the 1-dodecyl derivative (more lipophilic) and 3-fold more potent than the 1-pentyl analog (less lipophilic), indicating that, in addition to the overall tumor pharmacokinetics, pharmacodynamic factors may influence PDT activity. Drug lipophilicity was highly predictive for photodynamic activity. QSAR modeling revealed that direct antitumor effects and vascular PDT effects may be governed by common mechanisms, and that the mere association of high levels of photosensitizer in the tumor tissue is not sufficient for optimal PDT efficiency.
This article was published in Cancer Res and referenced in Journal of Cytology & Histology

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version