alexa An integrated imaging approach to the study of oxidative stress generation by mitochondrial dysfunction in living cells.
Immunology

Immunology

Immunome Research

Author(s): Cheng WY, Tong H, Miller EW, Chang CJ, Remington J

Abstract Share this page

BACKGROUND: The mechanisms of action of many environmental agents commonly involve oxidative stress resulting from mitochondrial dysfunction. Zinc is a common environmental metallic contaminant that has been implicated in a variety of oxidant-dependent toxicological responses. Unlike ions of other transition metals such as iron, copper, and vanadium, Zn(2+) does not generate reactive oxygen species (ROS) through redox cycling. OBJECTIVE: To characterize the role of oxidative stress in zinc-induced toxicity. METHODS: We used an integrated imaging approach that employs the hydrogen peroxide (H2O2)-specific fluorophore Peroxy Green 1 (PG1), the mitochondrial potential sensor 5,5 ,6,6 -tetrachloro-1,1 ,3,3 -tetraethylbenzimidazolylcarbocyanine iodide (JC-1), and the mitochondria-targeted form of the redox-sensitive genetically encoded fluorophore MTroGFP1 in living cells. RESULTS: Zinc treatment in the presence of the Zn(2+) ionophore pyrithione of A431 skin carcinoma cells preloaded with the H(2)O(2)-specific indicator PG1 resulted in a significant increase in H(2)O(2) production that could be significantly inhibited with the mitochondrial inhibitor carbonyl cyanide 3-chlorophenylhydrazone. Mitochondria were further implicated as the source of zinc-induced H(2)O(2) formation by the observation that exposure to zinc caused a loss of mitochondrial membrane potential. Using MTroGFP1, we showed that zinc exposure of A431 cells induces a rapid loss of reducing redox potential in mitochondria. We also demonstrated that zinc exposure results in rapid swelling of mitochondria isolated from mouse hearts. CONCLUSION: Taken together, these findings show a disruption of mitochondrial integrity, H(2)O(2) formation, and a shift toward positive redox potential in cells exposed to zinc. These data demonstrate the utility of real-time, live-cell imaging to study the role of oxidative stress in toxicological responses.

This article was published in Environ Health Perspect. and referenced in Immunome Research

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords