alexa An integrated model of the recognition of Candida albicans by the innate immune system.
Biochemistry

Biochemistry

Journal of Glycobiology

Author(s): Netea MG, Brown GD, Kullberg BJ, Gow NA

Abstract Share this page

Abstract The innate immune response was once considered to be a limited set of responses that aimed to contain an infection by primitive 'ingest and kill' mechanisms, giving the host time to mount a specific humoral and cellular immune response. In the mid-1990s, however, the discovery of Toll-like receptors heralded a revolution in our understanding of how microorganisms are recognized by the innate immune system, and how this system is activated. Several major classes of pathogen-recognition receptors have now been described, each with specific abilities to recognize conserved bacterial structures. The challenge ahead is to understand the level of complexity that underlies the response that is triggered by pathogen recognition. In this Review, we use the fungal pathogen Candida albicans as a model for the complex interaction that exists between the host pattern-recognition systems and invading microbial pathogens. This article was published in Nat Rev Microbiol and referenced in Journal of Glycobiology

Relevant Expert PPTs

Relevant Speaker PPTs

  • Xingmin Sun
    A chimeric protein (mTcd138) comprising the glucosyltransferase and domains of toxin B and the receptor binding domain of toxin A provides full protection against Clostridium difficile infection in mice
    PPT Version | PDF Version
  • Richard A. Kenley
    Equilibrium binding interactions between lotrafilcon a soft contact lenses and the two prostaglandin anti-glaucoma drugs Bimatoprost and Tafluprost
    PPT Version | PDF Version
  • Krzysztof Dziedzic
    The binding of bile acids by biscuits with bioactive substances during in vitro digestion
    PPT Version | PDF Version
  • Jasmina N Jovanovic
    GABAA receptor binding partners in the ER: a role in trafficking to the cell surface
    PDF Version
  • Murad H. Al-Salamat
    Design of small synthetic molecules that mimic IL-4 binding to IL-4Rα, which therefore promotes alternate macrophage differentiation (M2) with minimal effect on the endothelial and vascular IL-4Rα.
    PDF Version

Recommended Conferences

  • International Conference on Glycobiology
    Sep 21-22, 2017, Crowne Plaza Houston River Oaks, Houston, USA
  • 2nd International Conference on Biochemistry
    Sep 21-22, 2017 Macau, Hong Kong
  • International Conference on Glycobiology
    Oct 02-04, 2017 Atlanta, USA
  • 4th International Conference on Glycobiology and Glycochemistry
    July 16-18, 2018 Melbourne, Australia
  • 4th Glycobiology World Congress
    September 17-19, 2018 Rome, Italy
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords