alexa An investigation into the low temperature thermal behaviour of vitamin E preparation USP using differential scanning calorimetry and low frequency dielectric analysis.


Journal of Addiction Research & Therapy

Author(s): Barker SA, Yuen KH, Craig DQ

Abstract Share this page

Abstract The thermal and dielectric responses of Vitamin E Preparation USP have been examined to further understand the melting and solidification of this material. A TA Instruments 2920 Differential Scanning Calorimeter was used to examine the thermal response of the sample at a range of scanning speeds. Isothermal dielectric studies were performed using a Novocontrol Dielectric Spectrometer over a range of temperatures down to -70 degrees C and a frequency range of 10(6)-10(-2) Hz. The differential scanning calorimetry (DSC) studies showed an anomalous response whereby at slow heating rates (2 degrees C min(-1)) a small exotherm followed immediately by an endotherm was observed. This response was considerably diminished in magnitude at higher rates (5 degrees C min(-1)) and was not observed at the fastest heating rate of 10 degrees C min(-1). No thermal events were seen on cooling the sample to -60 degrees C. It was suggested that the material formed a glass on cooling, with a predicted transition temperature of approximately -100 degrees C. Further studies using a liquid nitrogen cooling system indicated that the system did indeed exhibit a glass transition, albeit at a higher temperature than predicted (ca -63 degrees C). Low frequency dielectric analysis showed a clear relaxation peak in the loss component, from which the relaxation time could be calculated using the Havriliak-Negami model. The relationship between the relaxation time and the temperature was studied and was found to follow the Vogel-Tammann-Fulcher (VTF) modification of the Arrhenius equation. It is therefore concluded that Vitamin E Preparation USP is a glass-forming material that exhibits kinetically-hindered recrystallisation and melting behaviour. The study has also indicated that DSC and low frequency dielectric analysis may be powerful complementary tools in the study of the low temperature behaviour of pharmaceuticals.
This article was published in J Pharm Pharmacol and referenced in Journal of Addiction Research & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version