alexa An overview of polylactides as packaging materials.
Engineering

Engineering

Journal of Textile Science & Engineering

Author(s): Auras R, Harte B, Selke S, Auras R, Harte B, Selke S

Abstract Share this page

Abstract Polylactide polymers have gained enormous attention as a replacement for conventional synthetic packaging materials in the last decade. By being truly biodegradable, derived from renewable resources and by providing consumers with extra end-use benefits such as avoiding paying the "green tax" in Germany or meeting environmental regulations in Japan, polylactides (PLAs) are a growing alternative as a packaging material for demanding markets. The aim of this paper is to review the production techniques for PLAs, summarize the main properties of PLA and to delineate the main advantages and disadvantages of PLA as a polymeric packaging material. PLA films have better ultraviolet light barrier properties than low density polyethylene (LDPE), but they are slightly worse than those of cellophane, polystyrene (PS) and poly(ethylene terephthalate) (PET). PLA films have mechanical properties comparable to those of PET and better than those of PS. PLA also has lower melting and glass transition temperatures than PET and PS. The glass transition temperature of PLA changes with time. Humidity between 10 and 95\% and storage temperatures of 5 to 40 degrees C do not have an effect on the transition temperature of PLA, which can be explained by its low water sorption values (i.e. <100 ppm at Aw = 1). PLA seals well at temperatures below the melting temperature but an appreciable shrinking of the films has been noted when the material is sealed near its melting temperature. Solubility parameter predictions indicate that PLA will interact with nitrogen compounds, anhydrides and some alcohols and that it will not interact with aromatic hydrocarbons, ketones, esters, sulfur compounds or water. The CO2, O2 and water permeability coefficients of PLA are lower than those of PS and higher than those of PET. Its barrier to ethyl acetate and D-limonene is comparable to PET. The amount of lactic acid and its derivatives that migrate to food simulant solutions from PLA is much lower than any of the current average dietary lactic acid intake values allowed by several governmental agencies. Thus, PLA is safe for use in fabricating articles for contact with food. This article was published in Macromol Biosci and referenced in Journal of Textile Science & Engineering

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords