alexa Anabaseine is a potent agonist on muscle and neuronal alpha-bungarotoxin-sensitive nicotinic receptors.
Toxicology

Toxicology

Journal of Clinical Toxicology

Author(s): Kem WR, Mahnir VM, Papke RL, Lingle CJ

Abstract Share this page

Abstract We assessed the pharmacological activity of anabaseine, a toxin found in certain animal venoms, relative to nicotine and anabasine on a variety of vertebrate nicotinic receptors, using cultured cells, the Xenopus oocyte expression system, contractility assays with skeletal and smooth muscle strips containing nicotinic receptors and in vivo rat prostration assay involving direct injection into the lateral ventricle of the brain. Anabaseine stimulated every subtype of nicotinic receptor that was tested. It was the most potent frog skeletal muscle nicotinic receptor agonist. At higher concentrations it also blocked the BC3H1 (adult mouse) muscle type receptor ion channel. The affinities of the three nicotinoid compounds for rat brain membrane alpha-bungarotoxin binding sites and their potencies for stimulating Xenopus oocyte homomeric alpha7 receptors, expressed in terms of their active monocation concentrations, displayed the same rank order, anabaseine>anabasine> nicotine. Although the maximum currents generated by anabaseine and anabasine at alpha7 receptors were equivalent to that of acetylcholine, the maximum response to nicotine was only about 65\% of the acetylcholine response. At alpha4-beta2 receptors the affinities and apparent efficacies of anabaseine and anabasine were much less than that of nicotine. Anabaseine, nicotine and anabasine were nearly equipotent on sympathetic (PC12) receptors, although parasympathetic (myenteric plexus) receptors were much more sensitive to anabaseine and nicotine but less sensitive to anabasine. These differences suggest that there may be different subunit combinations in these two autonomic nicotinic receptors. The preferential interactions of anabaseine, anabasine and nicotine with different receptor subtypes provides molecular clues that should be helpful in the design of selective nicotinic agonists.
This article was published in J Pharmacol Exp Ther and referenced in Journal of Clinical Toxicology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords