alexa Anaerobic degradation of solid material: importance of initiation centers for methanogenesis, mixing intensity, and 2D distributed model.
Environmental Sciences

Environmental Sciences

Journal of Bioremediation & Biodegradation

Author(s): Vavilin VA, Angelidaki I

Abstract Share this page

Abstract Batch anaerobic codigestion of municipal household solid waste (MHSW) and digested manure in mesophilic conditions was carried out. The different waste-to-biomass ratios and intensity of mixing were studied theoretically and experimentally. The experiments showed that when organic loading was high, intensive mixing resulted in acidification and failure of the process, while low mixing intensity was crucial for successful digestion. However, when loading was low, mixing intensity had no significant effect on the process. We hypothesized that mixing was preventing establishment of methanogenic zones in the reactor space. The methanogenic zones are important to withstand inhibition due to development of acids formed during acidogenesis. The 2D distributed models of symmetrical cylinder reactor are presented based on the hypothesis of the necessity of a minimum size of methanogenic zones that can propagate and establish a good methanogenic environment. The model showed that at high organic loading rate spatial separation of the initial methanogenic centers from active acidogenic areas is the key factor for efficient conversion of solids to methane. The initial level of methanogenic biomass in the initiation centers is a critical factor for the survival of these centers. At low mixing, most of the initiation methanogenic centers survive and expand over the reactor volume. However, at vigorous mixing the initial methanogenic centers are reduced in size, averaged over the reactor volume, and finally dissipate. Using fluorescence in situ hybridization, large irregular cocci of microorganisms were observed in the case with minimal mixing, while in the case with high stirring mainly dead cells were found. (c) 2004 Wiley Periodicals, Inc. This article was published in Biotechnol Bioeng and referenced in Journal of Bioremediation & Biodegradation

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords