alexa Analytical reproducibility in (1)H NMR-based metabonomic urinalysis.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Metabolomics:Open Access

Author(s): Keun HC, Ebbels TM, Antti H, Bollard ME, Beckonert O,

Abstract Share this page

Abstract Metabonomic analysis of biofluids and tissues utilizing high-resolution NMR spectroscopy and chemometric techniques has proven valuable in characterizing the biochemical response to toxicity for many xenobiotics. To assess the analytical reproducibility of metabonomic protocols, sample preparation and NMR data acquisition were performed at two sites (one using a 500 MHz and the other using a 600 MHz system) using two identical (split) sets of urine samples from an 8-day acute study of hydrazine toxicity in the rat. Despite the difference in spectrometer operating frequency, both datasets were extremely similar when analyzed using principal components analysis (PCA) and gave near-identical descriptions of the metabolic responses to hydrazine treatment. The main consistent difference between the datasets was related to the efficiency of water resonance suppression in the spectra. In a 4-PC model of both datasets combined, describing all systematic dose- and time-related variation (88\% of the total variation), differences between the two datasets accounted for only 3\% of the total modeled variance compared to ca. 15\% for normal physiological (pre-dose) variation. Furthermore, <3\% of spectra displayed distinct inter-site differences, and these were clearly identified as outliers in their respective dose-group PCA models. No samples produced clear outliers in both datasets, suggesting that the outliers observed did not reflect an unusual sample composition, but rather sporadic differences in sample preparation leading to, for example, very dilute samples. Estimations of the relative concentrations of citrate, hippurate, and taurine were in >95\% correlation (r(2)) between sites, with an analytical error comparable to normal physiological variation in concentration (4-8\%). The excellent analytical reproducibility and robustness of metabonomic techniques demonstrated here are highly competitive compared to the best proteomic analyses and are in significant contrast to genomic microarray platforms, both of which are complementary techniques for predictive and mechanistic toxicology. These results have implications for the quantitative interpretation of metabonomic data, and the establishment of quality control criteria for both regulatory agencies and for integrating data obtained at different sites.
This article was published in Chem Res Toxicol and referenced in Metabolomics:Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords