alexa Androgen receptor function is modulated by the tissue-specific AR45 variant.
Diabetes & Endocrinology

Diabetes & Endocrinology

Journal of Steroids & Hormonal Science

Author(s): AhrensFath I, Politz O, Geserick C, Haendler B

Abstract Share this page

Abstract A naturally occurring variant of the human androgen receptor (AR) named AR45 has been identified. It lacks the entire region encoded by exon 1 of the AR gene and is composed of the AR DNA-binding domain, hinge region and ligand-binding domain, preceded by a novel seven amino-acid long N-terminal extension. A survey of human tissues revealed that AR45 was expressed mainly in heart and skeletal muscle. In cotransfection experiments, AR45 inhibited AR function, an effect necessitating intact DNA- and ligand-binding properties. Overexpression of AR45 reduced the proliferation rate of the androgen-dependent LNCaP cells, in line with the repressive effects of AR45 on AR growth-promoting function. AR45 interacted with the AR N-terminal domain in two-hybrid assays, suggesting that AR inhibition was due to the formation of AR-AR45 heterodimers. Under conditions where the transcriptional coactivator TIF2 or the oncogene beta-catenin were overexpressed, AR45 stimulated androgen-dependent promoters in presence of dihydrotestosterone. AR45 activity was triggered additionally by the adrenal androgen androstenedione in presence of exogenous TIF2. Altogether, the data suggest an important role of AR45 in modulating AR function and add a novel level of complexity to the mode of action of androgens. This article was published in FEBS J and referenced in Journal of Steroids & Hormonal Science

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version