alexa Angiotensin II-induced upregulation of AT(1) receptor expression: sequential activation of NF-kappaB and Elk-1 in neurons.
Cardiology

Cardiology

Journal of Clinical & Experimental Cardiology

Author(s): Mitra AK, Gao L, Zucker IH

Abstract Share this page

Abstract It has been clearly established that increased circulating angiotensin II (ANG II) with concurrent upregulation of brain and peripheral ANG II type 1 receptors (AT(1)R) are important mediators in the pathophysiology of several diseases characterized by sympatho-excitation. In an effort to further understand the regulation of AT(1)R expression in neurons, we determined the role of sequential activation of the transcription factors nuclear factor-kappaB (NF-kappaB) and Ets-like protein 1 (Elk-1) in AT(1)R upregulation. We used CATH.a neurons as our neuronal cell model. Cells were treated with ANG II (100 nM) over a preset time course. Following ANG II activation, there was a temporal increase in the p65 subunit of NF-kappaB that was observed at 30 min, peaked at 1 h, and was sustained up to 24 h. There was a concomitant decrease of IkappaB and increased IkappaK expression. We also observed an increase in AT(1)R expression which followed the temporal increase of NF-kappaB. The activation of NF-kappaB was blocked by using the inhibitors parthenolide or p65 small interfering RNA (siRNA) which both led to a decrease in AT(1)R expression. The expression of Elk-1 was upregulated over a time period following ANG II activation and was decreased following NF-kappaB inhibition. p65-DNA binding was assessed using electrophoretic mobility shift assay, and it was shown that there was a time-dependent increased binding that was inhibited by means of parthenolide pretreatment or siRNA-mediated p65 gene silencing. Therefore, our results suggest a combined role for the transcription factors NF-kappaB and Elk-1 in the upregulation of AT(1)R in the CATH.a cell neuronal model. These data imply a positive feedback mechanism that may impact neuronal discharge sensitivity in response to ANG II.
This article was published in Am J Physiol Cell Physiol and referenced in Journal of Clinical & Experimental Cardiology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords