alexa Angiotensin II-stimulated collagen production in cardiac fibroblasts is mediated by reactive oxygen species.
Diabetes & Endocrinology

Diabetes & Endocrinology

Journal of Diabetes & Metabolism

Author(s): Lijnen P, Papparella I, Petrov V, Semplicini A, Fagard R

Abstract Share this page

Abstract OBJECTIVE: The aim of the present study was to determine whether inhibition of reduced nicotinamide adenine dinucleotide (phosphate) [NAD(P)H] oxidase and of various superoxide generating systems could affect the collagen production, the mRNA and protein expression of collagen types I and III in control and angiotensin II-treated cardiac fibroblasts. METHODS: Cardiac fibroblasts from passage 2 from normal male adult rats were cultured to confluency and incubated in serum-free Dulbecco's modified Eagle's medium for 24 h. The cells were then preincubated with(out) the tested inhibitors for 1 h and then further incubated with(out) angiotensin II (1 micromol/l) for 24 h. Collagen production was measured spectrophotometrically with picrosirius red as dye and with [3H]proline incorporation; collagen type I and III content by enzyme-linked immunosorbent assay and collagen type I and III mRNA expression by semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR). NAD(P)H-dependent superoxide anion production was assayed as superoxide dismutase-inhibitable cytochrome c reduction. Intracellular formation of reactive oxygen species was assessed with 2',7'-dichlorofluorescein diacetate as fluorescent probe. RESULTS: Angiotensin II stimulated the collagen production, the collagen I and III content and mRNA expression in cardiac fibroblasts, and apocynin, a membrane NAD(P)H oxidase inhibitor, abolished this induction. Rotenone, allopurinol, indomethacin, nordihydroguiaretic acid, ketoconazole and nitro-L-arginine (inhibitors of mitochondrial NAD(P)H oxidase, xanthine oxidase, cyclooxygenase, lipoxygenase, cytochrome P450 oxygenase and nitric oxide synthase, respectively) did not affect the angiotensin II-induced collagen production. Angiotensin II increased the NAD(P)H-dependent superoxide anion production and the intracellular generation of reactive oxygen species in cardiac fibroblasts, and apocynin abrogated this rise. CONCLUSIONS: Our data show that in adult rat cardiac fibroblasts the membrane-associated NAD(P)H oxidase complex is the predominant source of superoxide anion and reactive oxygen species generation in angiotensin II-stimulated adult cardiac fibroblasts. Inhibition of this NAD(P)H oxidase complex with apocynin completely blocked the angiotensin II-stimulated collagen production, and collagen I and III protein and mRNA expression. This article was published in J Hypertens and referenced in Journal of Diabetes & Metabolism

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords