alexa Angiotensin-(1-7) Through Receptor Mas Mediates Endothelial Nitric Oxide Synthase Activation via Akt-Dependent Pathways


Journal of Hypertension: Open Access

Author(s): Walkyria Oliveira Sampaio, Robson Augusto Souza dos Santo, Ernesto L Schiffrin, Leonor Tapias da Mata Machado, Raphael FariaSilva

Abstract Share this page

Angiotensin-(1-7) [Ang-(1-7)] causes endothelial-dependent vasodilation mediated, in part, by NO release. However, the molecular mechanisms involved in endothelial NO synthase (eNOS) activation by Ang-(1-7) remain unknown. Using Chinese hamster ovary cells stably transfected with Mas cDNA (Chinese hamster ovary-Mas), we evaluated the underlying mechanisms related to receptor Mas–mediated posttranslational eNOS activation and NO release. We further examined the Ang-(1-7) profile of eNOS activation in human aortic endothelial cells, which constitutively express the Mas receptor. Chinese hamster ovary-Mas cells and human aortic endothelial cell were stimulated with Ang-(1-7; 10−7 mol/L; 1 to 30 minutes) in the absence or presence of A-779 (10−6 mol/L). Additional experiments were performed in the presence of the phosphatidylinositol 3-kinase inhibitor wortmannin (10−6 mol/L). Changes in eNOS (at Ser1177/Thr495 residues) and Akt phosphorylation were evaluated by Western blotting. NO release was measured using both the fluorochrome 2,3-diaminonaphthalene and an NO analyzer. Ang-(1-7) significantly stimulated eNOS activation (reciprocal phosphorylation/dephosphorylation at Ser1177/Thr495) and induced a sustained Akt phosphorylation (P<0.05). Concomitantly, a significant increase in NO release was observed (2-fold increase in relation to control). These effects were blocked by A-779. Wortmannin suppressed eNOS activation in both Chinese hamster ovary-Mas and human aortic endothelial cells. Our findings demonstrate that Ang-(1-7), through Mas, stimulates eNOS activation and NO production via Akt-dependent pathways. These novel data highlight the importance of the Ang-(1-7)/Mas axis as a putative regulator of endothelial function.

  • To read the full article Visit
  • Subscription
This article was published in Hypertension and referenced in Journal of Hypertension: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version