alexa Anthracycline-induced cardiotoxicity: overview of studies examining the roles of oxidative stress and free cellular iron.
Medicine

Medicine

Anatomy & Physiology: Current Research

Author(s): Simnek T, Strba M, Popelov O, Adamcov M, Hrdina R,

Abstract Share this page

Abstract The risk of cardiotoxicity is the most serious drawback to the clinical usefulness of anthracycline antineoplastic antibiotics, which include doxorubicin (adriamycin), daunorubicin or epirubicin. Nevertheless, these compounds remain among the most widely used anticancer drugs. The molecular pathogenesis of anthracycline cardiotoxicity remains highly controversial, although the oxidative stress-based hypothesis involving intramyocardial production of reactive oxygen species (ROS) has gained the widest acceptance. Anthracyclines may promote the formation of ROS through redox cycling of their aglycones as well as their anthracycline-iron complexes. This proposed mechanism has become particularly popular in light of the high cardioprotective efficacy of dexrazoxane (ICRF-187). The mechanism of action of this drug has been attributed to its hydrolytic transformation into the iron-chelating metabolite ADR-925, which may act by displacing iron from anthracycline-iron complexes or by chelating free or loosely bound cellular iron, thus preventing site-specific iron-catalyzed ROS damage. However, during the last decade, calls for the critical reassessment of this "ROS and iron" hypothesis have emerged. Numerous antioxidants, although efficient in cellular or acute animal experiments, have failed to alleviate anthracycline cardiotoxicity in clinically relevant chronic animal models or clinical trials. In addition, studies with chelators that are stronger and more selective for iron than ADR-925 have also yielded negative or, at best, mixed outcomes. Hence, several lines of evidence suggest that mechanisms other than the traditionally emphasized "ROS and iron" hypothesis are involved in anthracycline-induced cardiotoxicity and that these alternative mechanisms may be better bases for designing approaches to achieve efficient and safe cardioprotection.
This article was published in Pharmacol Rep and referenced in Anatomy & Physiology: Current Research

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • International Human Anatomy and Physiology Congress
    November 2-3, 2017 Atlanta, USA

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords