alexa Antimicrobial efficacy of eugenol microemulsions in milk against Listeria monocytogenes and Escherichia coli O157:H7.
Materials Science

Materials Science

Journal of Nanomedicine & Nanotechnology

Author(s): Gaysinsky S, Taylor TM, Davidson PM, Bruce BD, Weiss J

Abstract Share this page

Abstract The antimicrobial activity of eugenol microemulsions (eugenol encapsulated in surfactant micelles) in ultrahigh-temperature pasteurized milk containing different percentages of milk fat (0, 2, and 4\%) was investigated. Antimicrobial microemulsions were prepared from a 5\% (wt) aqueous surfactant solution (Surfynol 485W) with 0.5\% (wt) eugenol. Two strains each of Listeria monocytogenes and Escherichia coli O157:H7 previously shown to be the least and most resistant to the microemulsion in microbiological media were used to inoculate sterile milk (10(4) CFU/ml). Samples were withdrawn and plated at 0, 1, 3, 6, 12, and 24 h for enumeration. Microemulsions completely prevented growth of L. monocytogenes for up to 48 h in skim milk and reduced both strains of E. coli O157:H7 to less than detectable levels in less than 1 h. Similarly, in 2\% fat milk, eugenol-Surfynol combinations reduced both strains of E. coli O157:H7 to less than detectable levels in less than 1 h but only increased the lag phase of both strains of L. monocytogenes. In full-fat milk (4\% fat), microemulsions inhibited growth of the least resistant strains of L. monocytogenes and E. coli but were ineffective against the two resistant strains. Unencapsulated eugenol was slightly more or as inhibitory as microemulsions against target pathogens. Results were attributed to diffusional mass transport of antimicrobials from microemulsions to the macroemulsion (milk). Results suggest that food composition, especially fat level, may affect the efficiency of targeting of foodborne pathogens with surfactant-encapsulated antimicrobials.
This article was published in J Food Prot and referenced in Journal of Nanomedicine & Nanotechnology

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords