alexa Antinociceptive effects of spinal cholinesterase inhibition and isobolographic analysis of the interaction with mu and alpha 2 receptor systems
Anesthesiology

Anesthesiology

Journal of Anesthesia & Clinical Research

Author(s): Naguib M, Yaksh TL

Abstract Share this page

BACKGROUND: Spinal cholinergic receptors have been shown to have a potent antinociceptive action, an effect that can be mimicked by spinal cholinesterase inhibitors. We (1) characterized the cholinergic receptor system through which intrathecally applied cholinesterase inhibitors produce their antinociceptive effect and (2) examined their interaction with spinal mu opioid and alpha 2-adrenergic receptors.

METHODS: Rats were prepared with chronic intrathecal catheters and the nociceptive threshold was assessed by the use of the radiant heat-evoked hind paw withdrawal.

RESULTS: Spinal administration of neostigmine, edrophonium, carbachol, clonidine, and morphine produced a dose-dependent increase on the thermally evoked hind paw withdrawal latency. The order of potency (dose producing a 50% effect, in nanomoles) was morphine (1.1) = neostigmine (1.2) > clonidine (4.4) > carbachol (15) >> edrophonium (112). Spinal pretreatment with atropine (35 nmol) attenuated the antinociceptive effect of intrathecal carbachol (55 nmol), neostigmine (15 nmol), and edrophonium (500 nmol) but did not affect the potency of intrathecal morphine (15 nmol) or clonidine (435 nmol). In addition, intrathecal pretreatment with naloxone (31 nmol) and yohimbine (28 nmol) attenuated the effects of intrathecally administered morphine and clonidine, respectively, but did not significantly affect the potency of carbachol, neostigmine, or edrophonium. The nicotinic receptor antagonist mecamylamine (60 nmol) did not affect thermal nociception. Isobolographic analysis revealed a synergistic interaction after the coadministration of neostigmine-clonidine (P < 0.001), edrophonium-clonidine (P < 0.0001), and edrophonium-morphine (P < 0.01) mixtures. Neostigmine-morphine exhibited simple additivity. CONCLUSIONS: These data indicate that analgesia after spinal cholinesterase inhibition is mediated through muscarinic, but not nicotinic cholinergic, opioid, or alpha 2-adrenergic receptor systems, and that these spinal effects of cholinesterase inhibition interact synergistically with the antinociceptive effects of intrathecal mu and alpha 2 agonists.

  • To read the full article Visit
  • Open Access
This article was published in Anesthesiology and referenced in Journal of Anesthesia & Clinical Research

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords