alexa Antiproliferative mechanism of action of cryptophycin-52: kinetic stabilization of microtubule dynamics by high-affinity binding to microtubule ends.
Oncology

Oncology

Journal of Cancer Science & Therapy

Author(s): Panda D, DeLuca K, Williams D, Jordan MA, Wilson L

Abstract Share this page

Abstract Cryptophycin-52 (LY355703) is a new synthetic member of the cryptophycin family of antimitotic antitumor agents that is currently undergoing clinical evaluation. At high concentrations (>/=10 times the IC50), cryptophycin-52 blocked HeLa cell proliferation at mitosis by depolymerizing spindle microtubules and disrupting chromosome organization. However, low concentrations of cryptophycin-52 inhibited cell proliferation at mitosis (IC50 = 11 pM) without significantly altering spindle microtubule mass or organization. Cryptophycin-52 appears to be the most potent suppressor of microtubule dynamics found thus far. It suppressed the dynamic instability behavior of individual microtubules in vitro (IC50 = 20 nM), reducing the rate and extent of shortening and growing without significantly reducing polymer mass or mean microtubule length. Using [3H]cryptophycin-52, we found that the compound bound to microtubule ends in vitro with high affinity (Kd, 47 nM, maximum of approximately 19.5 cryptophycin-52 molecules per microtubule). By analyzing the effects of cryptophycin-52 on dynamics in relation to its binding to microtubules, we determined that approximately 5-6 molecules of cryptophycin-52 bound to a microtubule were sufficient to decrease dynamicity by 50\%. Cryptophycin-52 became concentrated in cells 730-fold, and the resulting intracellular cryptophycin-52 concentration was similar to that required to stabilize microtubule dynamics in vitro. The data suggest that cryptophycin-52 potently perturbs kinetic events at microtubule ends that are required for microtubule function during mitosis and that it acts by forming a reversible cryptophycin-52-tubulin stabilizing cap at microtubule ends.
This article was published in Proc Natl Acad Sci U S A and referenced in Journal of Cancer Science & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords