alexa Antipsychotic agents differ in how fast they come off the dopamine D2 receptors. Implications for atypical antipsychotic action.
Pharmaceutical Sciences

Pharmaceutical Sciences

Journal of Clinical & Experimental Pharmacology

Author(s): Kapur S, Seeman P

Abstract Share this page

Abstract RATIONALE AND OBJECTIVE: While the blockade of dopamine D2 receptors are necessary for antipsychotic action, antipsychotic agents differ nearly a thousand-fold in their affinity for the D2 receptor. This affinity is determined by the rate at which the antipsychotic agent binds to (kon) and the rate at which it dissociates from (koff) the D2 receptors. The objective of this study was to determine the relationship between kon, koff and the affinity (Ki) of antipsychotic agents for the D2 receptors, with particular reference to typical and atypical antipsychotic agents. DESIGN: The koff of several typical as well as atypical antipsychotic agents (nemonapride, spiperone, haloperidol, chlorpromazine, raclopride, olanzapine, sertindole, clozapine and quetiapine) was measured in vitro using the 3H-radiolabelled analogues of these drugs. The affinity of these drugs for the D2 receptor was determined by competition with 3H-raclopride in vitro. The kon was derived from values of affinity and ++koff. MAIN OUTCOME MEASURES: kon, koff, and the Ki of antipsychotic drugs. RESULTS: The range of affinity values was similar to that conventionally accepted (0.025-155 nmol/L). The koff values varied a thousand-fold from 0.002 to 3.013 min-1, with relatively little variation in kon. The rate at which antipsychotic agents come off the receptor (koff) accounted for 99\% of the variation in their affinity for the D2 receptor; differences in kon did not account for differences in affinity. CONCLUSIONS: The differences in the affinity of antipsychotic agents are entirely determined by how fast they come off the D2 receptor. These differences in koff may lead to functionally different kinds of dopamine blockade. Drugs with a higher koff will be faster in blocking receptors, and once blocked, will provide more access to surges in dopamine transmission. Since atypical drugs show a lower affinity and a faster dissociation, a higher koff for the D2 receptor is proposed as a mechanism for "atypical" antipsychotic effect.
This article was published in J Psychiatry Neurosci and referenced in Journal of Clinical & Experimental Pharmacology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords