alexa Anti-synthetic peptide antibody reacting at the fusion junction of deletion-mutant epidermal growth factor receptors in human glioblastoma.


Journal of Vaccines & Vaccination

Author(s): P A Humphrey, A J Wong, B Vogelstein, M R Zalutsky, G N Fuller

Abstract Share this page

We have investigated human gliomas that amplify and rearrange the epidermal growth factor receptor gene, with generation of an in-frame deletion mutation of 802 nucleotides in the external domain. This in-frame deletion mutation generates a local amino acid sequence at the fusion junction of what normally were distant polypeptide sequences in the intact epidermal growth factor receptor. This 14-amino acid peptide was chemically synthesized, coupled to keyhole limpet hemocyanin, and used as an immunogen in rabbits. The elicited antibody reacted specifically with the fusion peptide in ELISA. The anti-fusion junction peptide antibody was purified by passage of the antiserum over a peptide affinity column with acidic elution. The purified antibody selectively bound the glioma deletion mutant as compared to the intact epidermal growth factor receptor as assessed by immunocytochemistry, immunofluorescence, immunoprecipitation with gel electrophoresis, and binding experiments using radioiodinated antibody. These data indicate that it is feasible to generate site-specific anti-peptide antibodies that are highly selective for mutant proteins in human tumors. The anti-peptide antibody described here, and other mutation site-specific antibodies, should be ideal candidates for tumor immunoimaging and immunotherapy.

This article was published in Proc Natl Acad Sci U S A and referenced in Journal of Vaccines & Vaccination

Relevant Expert PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version