alexa Anti-tumor effects of fibroblast growth factor-binding protein (FGF-BP) knockdown in colon carcinoma.
Oncology

Oncology

Journal of Cancer Science & Therapy

Author(s): Schulze D, Plohmann P, Hbel S, Aigner A

Abstract Share this page

Abstract BACKGROUND: Fibroblast growth factors FGF-1 and FGF-2 are often upregulated in tumors, but tightly bound to heparan sulphate proteoglycans of the extracellular matrix (ECM). One mechanism of their bioactivation relies on the FGF-binding protein (FGF-BP) which, upon reversible binding to FGF-1 or -2, leads to their release from the ECM. FGF-BP increases tumorigenicity and is highly expressed in tumors like colon carcinoma. In this paper, we analyse cellular and molecular consequences of RNAi-mediated FGF-BP knockdown in colon carcinoma, and explore the therapeutic effects of the nanoparticle-mediated delivery of small interfering RNAs (siRNAs) for FGF-BP targeting. RESULTS: Employing stable RNAi cells, we establish a dose-dependence of cell proliferation on FGF-BP expression levels. Decreased proliferation is mirrored by alterations in cell cycle distribution and upregulation of p21, which is relevant for mediating FGF-BP effects. While inhibition of proliferation is mainly associated with reduced Akt and increased GSK3β activation, antibody array-based analyses also reveal other alterations in MAPK signalling. Additionally, we demonstrate induction of apoptosis, mediated through caspase-3/7 activation, and alterations in redox status upon FGF-BP knockdown. These effects are based on the upregulation of Bad, Bax and HIF-1α, and the downregulation of catalase. In a therapeutic FGF-BP knockdown approach based on RNAi, we employ polymer-based nanoparticles for the in vivo delivery of siRNAs into established wildtype colon carcinoma xenografts. We show that the systemic treatment of mice leads to the inhibition of tumor growth based on FGF-BP knockdown. CONCLUSIONS: FGF-BP is integrated in a complex network of cytoprotective effects, and represents a promising therapeutic target for RNAi-based knockdown approaches.
This article was published in Mol Cancer and referenced in Journal of Cancer Science & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords