alexa Anti-viral drug treatment: dynamics of resistance in free virus and infected cell populations.


Journal of Antivirals & Antiretrovirals

Author(s): Nowak MA, Bonhoeffer S, Shaw GM, May RM

Abstract Share this page

Abstract Anti-viral drug treatment of infections with the human immunodeficiency virus type I (HIV-1) usually leads to a rapid decline in the abundance of plasma virus. The effect of single drug therapy, however, is often only short-lived as the virus readily develops drug-resistant mutants. In this paper we provide analytic approximations for the rate of emergence of resistant virus. We study the decline of wildtype virus and the rise of resistant mutant virus in different compartments of the virus population such as free plasma virus, cells infected with actively replicating virus, long-lived infected cells and cells carrying defective provirus. The model results are compared with data on the rise of drug-resistant virus in three HIV-1 infected patients treated with neverapine (NVP). We find that the half-life of latently infected cells is between 10 and 20 days, whereas the half-life of cells with defective provirus is about 80 days. We also provide a crude estimate for the basic reproductive ratio of HIV-1 during NVP therapy. This article was published in J Theor Biol and referenced in Journal of Antivirals & Antiretrovirals

Relevant Expert PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version