alexa Apoptosis: clinical relevance and pharmacological manipulation.
Pharmaceutical Sciences

Pharmaceutical Sciences

Journal of Clinical & Experimental Pharmacology

Author(s): Thatte U, Dahanukar S

Abstract Share this page

Abstract Apoptosis, often synonymously used with the term 'programmed cell death', is an active, genetically controlled process that removes unwanted or damaged cells. Suppression, overexpression or mutation of a number of genes which orchestrate the apoptotic process are associated with disease. The diseases in which apoptosis has been implicated can be grouped into 2 broad groups: those in which there is increased cell survival (i.e. associated with inhibition of apoptosis) and those in which there is excess cell death (where apoptosis is overactive). Diseases in which there is an excessive accumulation of cells include cancer, autoimmune disorders and viral infections. Deprivation of trophic factors is known to induce apoptosis in cells dependent on them for survival. This fact has been exploited in the use of antiandrogens or antiestrogens in the management of prostate or breast cancer. Haemopoietic growth factors like granulocyte-macrophage colony stimulating factor (GM-CSF) or interleukin-3 prevent apoptosis in target cells and modulation of levels of these factors has been tried in the prevention of chemotherapy-induced myelosuppression. Until recently, it was thought that cytotoxic drugs killed target cells directly by interfering with some life-maintaining function. However, of late, it has been shown that exposure to several cytotoxic drugs with disparate mechanisms of action induces apoptosis in both malignant and normal cells. Physiological regulation of cell death is essential for the removal of potentially autoreactive lymphocytes during development and the removal of excess cells after the completion of an immune response. Recent work has clearly demonstrated that dysregulation of apoptosis may underlie the pathogenesis of autoimmune diseases by allowing abnormal autoreactive lymphocytes to survive. AIDS and neurodegenerative disorders like Alzheimer's or Parkinson's disease represent the most widely studied group of disorders where an excess of apoptosis has been implicated. Amyotrophic lateral sclerosis, retinitis pigmentosa, epilepsy and alcoholic brain damage are other neurological disorders in which apoptosis has been implicated. Apoptosis has been reported to occur in conditions characterised by ischaemia, e.g. myocardial infarction and stroke. The liver is a site where apoptosis occurs normally. This process has also been implicated in a number of liver disorders including obstructive jaundice. Hepatic damage due to toxins and drugs is also associated with apoptosis in hepatocytes. Apoptosis has also been identified as a key phenomenon in some diseases of the kidney, i.e. polycystic kidney, as well as in disorders of the pancreas like alcohol-induced pancreatitis and diabetes.
This article was published in Drugs and referenced in Journal of Clinical & Experimental Pharmacology

Relevant Expert PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version