alexa Apoptosis in lymphoid and parenchymal cells during sepsis: findings in normal and T- and B-cell-deficient mice.
Immunology

Immunology

Journal of Clinical & Cellular Immunology

Author(s): Hotchkiss RS, Swanson PE, Cobb JP, Jacobson A, Buchman TG,

Abstract Share this page

Abstract OBJECTIVES: To determine if apoptosis (programmed cell death) occurs systemically in lymphoid and parenchymal cells during sepsis. To examine the potential role of T and B cells in the apoptotic process using knockout mice deficient in mature T and B lymphocytes. DESIGN: Prospective, randomized, controlled trial. SETTING: Animal laboratory in a university medical setting. INTERVENTIONS: Cecal ligation and puncture (CLP) (n = 34) or sham surgery (n = 13) was performed in female ND4 mice and, 15 to 22 hrs postoperatively, thymus, lung, heart, spleen, ileum, colon, liver, kidney, brain, and muscle were obtained and examined for apoptosis. A second group of mice (Rag-1) which are totally deficient in mature T and B cells also underwent CLP (n = 14) or sham surgery (n = 14) and had examination of tissues for apoptosis. MEASUREMENTS AND MAIN RESULTS: Four methods with varying sensitivities and specificities were used to detect apoptosis, including: a) DNA agarose gel electrophoresis; b) terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL); c) electron microscopy; and d) light microscopy. In CLP mice, multiple methods demonstrated apoptosis in lymphocytes in thymus, spleen, ileum, colon, lung, and skeletal muscle. In addition to lymphocytes, parenchymal cells in ileum, colon, lung, and to a lesser extent, in skeletal muscle and kidney were apoptotic in CLP mice. There was no evidence of apoptosis by any method of detection in liver, brain, or heart. Results in Rag-1 mice which are deficient in T and B cells demonstrated extensive apoptosis in thymus, spleen, and ileum with less degrees of apoptosis in colon and lung. Both lymphoid cells and parenchymal cells were apoptotic. Rag-1 mice which underwent CLP did not die prematurely and there were no apparent observable differences in the physical response (tachypnea, piloerection, lethargy, etc), or intra-abdominal bowel inflammation/adhesions compared with CLP mice with normal T and B cells. CONCLUSIONS: Apoptosis is an important mechanism of cell death in lymphocytes and parenchymal cells in sepsis and occurs systemically in many organs. Apoptosis may be an important cause of immunologic suppression in sepsis by inducing widespread lymphocyte depletion. Alternately, apoptosis may be beneficial to host survival by down-regulating the inflammatory response which accompanies sepsis. The degree to which parenchymal cell apoptosis is contributing to multiple organ failure cannot be determined from the present study. Findings in Rag-1 mice demonstrate that mature T and B cells and their secretory products are not necessary for apoptosis to occur during sepsis and that apoptotic cell death is not restricted to T or B cells. Apoptosis may be a key regulator of the balance between the pro- and anti-inflammatory process.
This article was published in Crit Care Med and referenced in Journal of Clinical & Cellular Immunology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords