alexa Application of electrooxidation process for treating concentrated wastewater from distillery industry with a voluminous electrode.
Agri and Aquaculture

Agri and Aquaculture

Journal of Aquaculture Research & Development

Author(s): Piyaareetham P, Shenchunthichai K, Hunsom M

Abstract Share this page

Abstract Experiments in a laboratory scale were carried out to reduce color and chemical oxygen demand (COD) in distillery wastewater by using electrooxidation processes. A cylindrical electrochemical reactor constructed in an axial configuration with 0.2m diameter and 0.35 m height was employed in this study. Two materials including graphite particles and titanium sponge were used as the voluminous anodes. A cathode made from Ti/RuO(2) was placed 0.04-0.05 m above the upper level of anode particles. Effect of parameters including initial pH of wastewater (1-5), time of dilution, current intensity (1-10A), type of additive (H(2)O(2) and NaCl), and additive concentration were investigated. The results indicated that the anode made from titanium sponge showed a higher potential to treat wastewater than the another one. The treatment in acidic condition (pH=1) provided the maximum oxidation of organic pollutants in wastewater. The presence of additives can promote the reduction of COD and color in wastewater approximately 89.62\% and 92.24\%, respectively. The maximum current efficiency was reached at the first 30 min and decreased slightly as electrolysis time proceeded due to the formation of passivation on the electrode surface. The energy consumption was obtained in the range of 2.82-4.83 kWh/kgCOD or 24.08-28.07 kWh/m(3) wastewater depending upon the concentration of additive. The kinetics of COD reduction was the pseudo first-order reaction with a fast rate constant of 6.78 min(-1). This article was published in Water Res and referenced in Journal of Aquaculture Research & Development

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords