alexa Application of the biotic ligand model to predicting zinc toxicity to rainbow trout, fathead minnow, and Daphnia magna.
Toxicology

Toxicology

Journal of Environmental & Analytical Toxicology

Author(s): Santore RC, Mathew R, Paquin PR, DiToro D, Santore RC, Mathew R, Paquin PR, DiToro D

Abstract Share this page

Abstract The Biotic Ligand Model has been previously developed to explain and predict the effects of water chemistry on the toxicity of copper, silver, and cadmium. In this paper, we describe the development and application of a biotic ligand model for zinc (Zn BLM). The data used in the development of the Zn BLM includes acute zinc LC50 data for several aquatic organisms including rainbow trout, fathead minnow, and Daphnia magna. Important chemical effects were observed that influenced the measured zinc toxicity for these organisms including the effects of hardness and pH. A significant amount of the historical toxicity data for zinc includes concentrations that exceeded zinc solubility. These data exhibited very different responses to chemical adjustment than data that were within solubility limits. Toxicity data that were within solubility limits showed evidence of both zinc complexation, and zinc-proton competition and could be well described by a chemical equilibrium approach such as that used by the Zn BLM.
This article was published in Comp Biochem Physiol C Toxicol Pharmacol and referenced in Journal of Environmental & Analytical Toxicology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords