alexa Application of the lag-after-pulsed-separation (LAPS) flow meter to different protein solutions.

Journal of Clinical Diabetes & Practice

Author(s): Sengupta S, Mahmud G, Chiou DJ, Ziaie B, Barocas VH

Abstract Share this page

Abstract A lag after pulsed separation (LAPS) meter was previously developed to measure flow rates of protein solutions. The LAPS meter operates on the time-of-flight principle. An upstream event (electrophoretic concentration of the particles in one section of the device) is detected downstream (by change in ac resistance). The time lag between the event and its detection is inversely proportional to the fluid flow rate. We demonstrate the ability of the LAPS meter to measure the flow rate of solutions containing one or more charged biomacromolecules or particles. A prototype of the LAPS meter was used to measure flow rates of solutions of model proteins [bovine serum albumin (BSA), lysozyme and hemoglobin] and mixtures of BSA and lysozyme. Flow rates of 10-50 microl min(-1)(average velocities of 0.24-1.2 mm s(-1)) were measured. When a single ac measurement was used, the results were solution-dependent, which we attribute to the interface between the protein solution and the ac electrodes. A differential mode, in which the signal from a positive and a negative dc pulse were subtracted from each other, eliminated interfacial effects and led to a single universal (solution-independent) calibration curve. The LAPS meter can be used as a non-invasive, no-moving-parts flow sensor in any microfluidic system (such as drug delivery devices or micro-reactor arrays) where one needs to measure the flow rate of a solution or a suspension containing charged species such as proteins or cells. This article was published in Analyst and referenced in Journal of Clinical Diabetes & Practice

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords