alexa Applications of nanoparticles in ophthalmology.
Materials Science

Materials Science

Journal of Nanomedicine & Nanotechnology

Author(s): Diebold Y, Calonge M

Abstract Share this page

Abstract Nanocarriers, such as nanoparticles, have the capacity to deliver ocular drugs to specific target sites and hold promise to revolutionize the therapy of many eye diseases. Results to date strongly suggest that ocular medicine will benefit enormously from the use of this nanometric scale technology. One of the most important handicaps of the eye as a target organ for drugs is the presence of several barriers that impede direct and systemic drug access to the specific site of action. Superficial barriers include the ocular surface epithelium and the tear film, and internal barriers include the blood-aqueous and blood-retina barriers. Topical application is the preferred route for most drugs, even when the target tissues are at the back part of the eye where intraocular injections are currently the most common route of administration. Direct administration using any of these two routes faces many problems related to drug bioavailability, including side effects and repeated uncomfortable treatments to achieve therapeutic drug levels. In this regard, the advantages of using nanoparticles include improved topical passage of large, poorly water-soluble molecules such as glucocorticoid drugs or cyclosporine for immune-related, vision-threatening diseases. Other large and unstable molecules, such as nucleic acids, delivered using nanoparticles offer promising results for gene transfer therapy in severe retinal diseases. Also, nanoparticle-mediated drug delivery increases the contact time of the administered drug with its target tissue, such as in the case of brimonidine, one of the standard treatments for glaucoma, or corticosteroids used to treat autoimmune uveitis, a severe intraocular inflammatory process. In addition, nanocarriers permit the non-steroidal anti-inflammatory drug indomethacin to reach inner eye structures using the transmucosal route. Finally, nanoparticles allow the possibility of targeted delivery to reach specific types of cancer, such as melanoma, leaving normal cells untouched. This review summarizes experimental results from our group and others since the beginnings of nanocarrier technology to deliver drugs to different locations in the eye. Also, it explores the future possibilities of nanoparticles not only as drug delivery systems but also as aides for diagnostic purposes. Copyright © 2010 Elsevier Ltd. All rights reserved. This article was published in Prog Retin Eye Res and referenced in Journal of Nanomedicine & Nanotechnology

Relevant Expert PPTs

Recommended Conferences

  • Nano Congress for Next Generation
    August 31-September 01, 2017 Brussels,Belgium
  • Graphene & 2D Materials
    September 14-15, 2017 Edinburgh, Scotland
  • Graphene & 2D Materials
    November 6-7, 2017 Frankfurt, Germany
  • World Congress on Nanoscience and Nano Technology
    October 16-17, 2017 Dubai, UAE
  • World Medical Nanotechnology Congress
    October 18-19, 2017 Osaka, Japan
  • Nanoscienceand Molecular Nanotechnology
    Nov 06-08, 2017 Frankfurt, Germany
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords