alexa Are MDCK cells transfected with the human MDR1 gene a good model of the human intestinal mucosa?
Pharmaceutical Sciences

Pharmaceutical Sciences

Journal of Bioequivalence & Bioavailability

Author(s): Tang F, Horie K, Borchardt RT

Abstract Share this page

Abstract PURPOSE: To investigate whether Madin-Darby canine kidney cells transfected with the human MDR1 gene (MDCK-MDR1) are a good model of the human intestinal mucosa. METHODS: P-glycoprotein (P-gp) expression in Caco-2 cells was compared with P-gp expression in MDCK wild- type (MDCK-WT) and MDCK-MDR1 cells using Western blotting methods. The polarized efflux activities of P-gp(s) in MDCK-MDRI cells, MDCK-WT cells, and Caco-2 cells were compared using digoxin as a substrate. Apparent Michaelis-Menten constants (K(M),Vmax) for the efflux of vinblastine in these three cell lines were determined. Apparent inhibition constants (K(I)) of known substrates/inhibitors of P-gp were determined by measuring their effects on the efflux of digoxin in Caco-2 or MDCK-MDR1 cell monolayers. RESULTS: MDCK-MDR1 cells expressed higher levels of P-gp compared to Caco-2 and MDCK-WT cells, as estimated by Western blots. Two isoforms of P-gp were expressed in Caco-2 and MDCK cells migrating with molecular weights of 150 kDa and 170 kDa. In MDCK-MDR1 cells, the 150 kDa isoforms appeared to be overexpressed. The MDCK-MDR1 cells exhibited higher polarized efflux of [3H]-digoxin than did Caco-2 and MDCK-WT cells. K(M) values of vinblastine in Caco-2. MDCK-WT, and MDCK-MDR1 cells were 89.2+/-26.1, 24.5+/-1.1, and 252.8+/-134.7 microM, respectively, whereas Vmax values were 1.77+/-0.22, 0.42+/-0.01, and 2.43+/-0.86 pmolcm(-2)s(-1), respectively. Known P-gp substrates/inhibitors showed, in general, lower K(I) values for inhibition of digoxin efflux in Caco-2 cells than in MDCK-MDR1 cells. CONCLUSIONS: These data suggest that the MDCK-MDR1 cells overexpress the 150 kDa isoform of P-gp. MDCK-MDR1 cells are a useful model for screening the P-gp substrate activity of drugs and drug candidates. However, the apparent kinetics constants and affinities of substrates determined in the MDCK-MDR1 cell model may be different than the values obtained in Caco-2 cells. These differences in substrate activity could result from differences in the relative expression levels of total P-gp in Caco-2 and MDCK-MDR1 cells and/or differences in the partitioning of substrates into these two cell membrane bilayers.
This article was published in Pharm Res and referenced in Journal of Bioequivalence & Bioavailability

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords