alexa Arsenate removal by nanostructured ZrO2 spheres.
Chemical Engineering

Chemical Engineering

Journal of Advanced Chemical Engineering

Author(s): Hristovski KD, Westerhoff PK, Crittenden JC, Olson LW

Abstract Share this page

Abstract A new zirconium oxide-based media for arsenate removal from water was fabricated and evaluated in batch and continuous flow experiments. Highly porous (epsilonp approximately 0.9) nanostructured zirconium oxide spheres were fabricated by the impregnation of macroporous ion-exchange media (CalRes 2103, Calgon) with zirconium salt; the media was then ashed at T > 750 +/- 50 degrees C to remove the organic polymer resin and obtain ZrO2 spheres. The spheres generally ranged from 200 to 800 microm in diameter, and consisted of ZrO2 nanoastructures generally ranging between 20 and 100 nm. They also exhibited monoclinic and tetragonal crystalline structures, and had an isoelectric point of 5.6. Equilibrium batch experiments were conducted in 10 mM NaHCO3 buffered nanopure water at three pH values (6.4,7.3, and 8.3) with 120 microg/L As(V). Data were fit with the Freundlich isotherm equation (q(e) = Kx CE(1/n)), resulting in an intensity parameter (1/n) of approximately 0.33 and capacity parameters (K) ranging from 115 to 400 (microg As(V) g(-1) dry media)(L microg(-1))1/n. The pore diffusion coefficient and toruosity were estimated to be 6.4 x 10(-6) cm2 s(-1) and 1.3, respectively. For a packed bed adsorbent operating at a loading rate of 11.5 m3 m(-2) hr(-1) in a realistic continuous flow experiment, the external mass transport coefficient was estimated to be kf approximately 6.3 x 10(-3) cm s(-1). The pore diffusion coefficient and the external mass transport coefficient were used with the pore surface diffusion model (PSDM) to predict the arsenate breakthrough curve. A short bed adsorbent (SBA) test was conducted under the same conditions to validate the model. In this study, surface diffusion was ignored because the particles have a very high porosity. The validated model was used to predict arsenate breakthrough in a simulated full-scale system. The overall combined use of modeling, material characterization, equilibria, and kinetics tests determined the suitability of the media for arsenate treatment cheaper, easier, faster, and with less media than a long duration pilot test would have. Although the fabricated zirconium oxide spheres exhibited adsorption capacity comparable to some commercially available media such as iron based (hydr)oxides, the high cost of fabrication may render the media not feasible for wide use in commercial applications. However, the very high porosity of this media provides for improved pore diffusion and faster overall mass transport, which may be critical for applications where mass transport is the limiting factor.
This article was published in Environ Sci Technol and referenced in Journal of Advanced Chemical Engineering

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 2nd Euro Global Summit and Expo on Biomass
    September 21-22, 2017 Madrid, Spain
  • 7th International Congress on Biofuels and Bioenergy
    October 2-4, 2017 Toronto, Canada
  • 3rd International Conference on Chemical Engineering
    October 2-4, 2017 Chicago, USA
  • 7th International Conference and Exhibition on Biopolymers and Bioplastics
    October 19-21, 2017 San Francisco, USA
  • 6th International Congress on Biofuels, Bioenergy and Bioeconomy
    December 04-06, 2017 Sao Paulo, Brazil
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords