alexa Arsenic sorption on TiO2 nanoparticles: size and crystallinity effects.
Chemical Engineering

Chemical Engineering

Journal of Advanced Chemical Engineering

Author(s): Jegadeesan G, AlAbed SR, Sundaram V, Choi H, Scheckel KG,

Abstract Share this page

Abstract Single solute As (III) and As (V) sorption on nano-sized amorphous and crystalline TiO(2) was investigated to determine: size and crystallinity effects on arsenic sorption capacities, possible As (III) oxidation, and the nature of surface complexes. Amorphous and crystalline nanoparticles were prepared using sol-gel synthesis techniques. For amorphous TiO(2), solute pH in the range of 4-9 had a profound impact on only As (V) sorption. As (III) and As (V) sorption isotherms indicated that sorption capacities of the different TiO(2) polymorphs were dependent on the sorption site density, surface area (particle size) and crystalline structure. When normalized to surface area, As (III) surface coverage on the TiO(2) surface remained almost constant for particles between 5 and 20 nm. However, As (V) surface coverage increased with the degree of crystallinity. X-ray absorption spectroscopic analysis provided evidence of partial As (III) oxidation on amorphous TiO(2) rather than crystalline TiO(2). The data also indicated that As (III) and As (V) form binuclear bidentate inner-sphere complexes with amorphous TiO(2) at neutral pH. (c) 2009 Elsevier Ltd. All rights reserved. This article was published in Water Res and referenced in Journal of Advanced Chemical Engineering

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version