alexa Artificial functional difference between microbial communities caused by length difference of sequencing reads.
Mathematics

Mathematics

Journal of Biometrics & Biostatistics

Author(s): Zhang Q, Doak TG, Ye Y

Abstract Share this page

Abstract Homology-based approaches are often used for the annotation of microbial communities, providing functional profiles that are used to characterize and compare the content and the functionality of microbial communities. Metagenomic reads are the starting data for these studies, however considerable differences are observed between the functional profiles-built from sequencing reads produced by different sequencing techniques-for even the same microbial community. Using simulation experiments, we show that such functional differences are likely to be caused by the actual difference in read lengths, and are not the results of a sampling bias of the sequencing techniques. Furthermore, the functional differences derived from different sequencing techniques cannot be fully explained by the read-count bias, i.e. 1) the higher fraction of unannotated shorter reads (i.e., "read length matters"), and 2) the different lengths of proteins in different functional categories. Instead, we show here that specific functional categories are under-annotated, because similarity-search-based functional annotation tools tend to miss more reads from functional categories that contain less conserved genes/proteins. In addition, the accuracy of functional annotation of short reads for different functions varies, further skewing the functional profiles. To address these issues, we present a simple yet efficient method to improve the frequency estimates of different functional categories in the functional profiles of metagenomes, based on the functional annotation of simulated reads from complete microbial genomes.
This article was published in Pac Symp Biocomput and referenced in Journal of Biometrics & Biostatistics

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords