alexa Artificial receptor-functionalized nanoshell: facile preparation, fast separation and specific protein recognition.
Environmental Sciences

Environmental Sciences

Journal of Petroleum & Environmental Biotechnology

Author(s): Ouyang R, Lei J, Ju H

Abstract Share this page

Abstract This work combined molecular imprinting technology with superparamagnetic nanospheres as the core to prepare artificial receptor-functionalized magnetic nanoparticles for separation of homologous proteins. Using dopamine as a functional monomer, novel surface protein-imprinted superparamagnetic polydopamine (PDA) core-shell nanoparticles were successfully prepared in physiological conditions, which could maintain the natural structure of a protein template and achieved the development of molecularly imprinted polymers (MIPs) from one dimension to zero dimension for efficient recognition towards large biomolecules. The resultant nanoparticles could be used for convenient magnetic separation of homologous proteins with high specificity. The nanoparticles possessed good monodispersibility, uniform surface morphology and high saturation magnetization value. The bound amounts of template proteins measured by both indirect and direct methods were in good agreement. The maximum number of imprinted cavities on the surface of the bovine hemoglobin (Hb)-imprinted nanoshell was 2.21 x 10(18) g( - 1), which well matched their maximum binding capacity toward bovine Hb. Both the simple method for preparation of MIPs and the magnetic nanospheres showed good application potential in fast separation, effective concentration and selective biosensing of large protein molecules. This article was published in Nanotechnology and referenced in Journal of Petroleum & Environmental Biotechnology

Relevant Expert PPTs

Relevant Speaker PPTs

  • Praveena T
    The structural and molecular insights into natural killer T cell receptor (NKT) and CD1d-glycolipid recognition
    PPT Version | PDF Version
  • Guijun Wang
    Design, Synthesis and Characterization of Glycolipids and Glycoclusters as Molecular Gelators
    PPT Version | PDF Version
  • Yung-Chih Kuo
    “Yung-Chih Kuo-National-Chung-Cheng-University-Republic-of-China-Targeting-delivery-of-etoposide-to-inhibit-the-growth-of-human-glioblastoma-multiforme-using-lactoferrin-and-folic-acid-grafted-poly(lactide-co-glycolide)-nanoparticles”
    PPT Version | PDF Version

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version