alexa Aspirin resistance detected with aggregometry cannot be explained by cyclooxygenase activity: involvement of other signaling pathway(s) in cardiovascular events of aspirin-treated patients.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Glycomics & Lipidomics

Author(s): Ohmori T, Yatomi Y, Nonaka T, Kobayashi Y, Madoiwa S,

Abstract Share this page

Abstract OBJECTIVES: Although the concept of aspirin resistance is extensively reported in medical literature, its precise mechanisms and clinical outcomes are largely unknown. In this study, we examined individual thromboxane biosynthesis and platelet aggregation in aspirin-treated patients, and whether the results of a platelet aggregation test influenced clinical outcomes. RESULTS: Subjects taking 81 mg of aspirin (n = 50) and controls (n = 38) were evaluated for platelet aggregation and platelet cyclooxygenase-1 (COX-1) activity by measuring collagen-induced thromboxane B2 production. For aggregometry, both light transmission (LT) and laser-light scattering methods were employed to quantitatively evaluate aggregate sizes and numbers. Aspirin treatment resulted in the inhibition of collagen-induced platelet aggregation, particularly the transition from small to large platelet aggregates. Although platelet COX-1 activity seemed to be uniformly inhibited in all patients, platelet aggregation studies showed great inter-individual differences; variation in platelet COX-1 activity only accounted for 6-20\% of the individual aggregations. Factor analysis revealed the existence of a common factor (other than platelet COX-1) that explained 48.4\% of the variations in platelet aggregation induced by collagen, adenosine diphosphate (ADP), and collagen-related peptide. We then prospectively enrolled 136 aspirin-treated patients in our study, and we found that being in the upper quartile level of LT, or with large aggregate formation induced by collagen, was an independent risk factor for developing cardiovascular events within 12 months [hazard ratio (HR) = 7.98, P = 0.008 for LT; HR = 7.76, P = 0.007 for large aggregates]. On the other hand, the existence of diabetes mellitus was an independent risk factor for overall outcomes (HR 1.30-11.9, P = 0.015-0.033). CONCLUSIONS: Aspirin resistance expressed as unsuppressed platelet COX-1 activity is a rare condition in an out-patient population. Other factor(s) affecting collagen-induced platelet aggregation may influence early outcomes in aspirin-treated patients. This article was published in J Thromb Haemost and referenced in Journal of Glycomics & Lipidomics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 3rd International Conference on Transcriptomics
    October 30 - November 01, 2017 Bangkok, Thailand

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords